文化框架下多群智能优化算法的云作业调度
DOI:
CSTR:
作者:
作者单位:

(平顶山教育学院 计算机科学与应用系,河南 平顶山 467002)

作者简介:

孙琼琼(1980),女,河南郏县人,讲师,硕士,主要从事云计算及计算机网络技术方向的研究。[FQ)]

通讯作者:

中图分类号:

基金项目:

河南省科技计划重点项目(102102210416)


Job Scheduling in Cloud Computing Based on Multi-swarm Optimization Algorithm With Cultural Algorithm
Author:
Affiliation:

(Department of Computer Science, Pingdingshan Institute of Education, Pingdingshan 467002,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    作业调度是一种云计算核心技术,为了获得更优的云计算作业调度方案,提出一种文化框架下多群智能优化算法的云作业调度方法;首先构建云作业调度问题的数学模型,然后借助文化算法模型,粒子群算法组成信仰空间,人工鱼群算法组成群体空间,两者之间并行演化,相互促进,对云计算作业调度数学模型进行求解,最后通过仿真实验测试算法的性能;结果表明,本文加快了算法的收敛速度,获得了更优的云计算作业调度方案,大幅度缩短少云计算作业完成时间,具有一定的实用价值。

    Abstract:

    Job scheduling is the core technology of cloud computing, in order to obtain good scheduling results, a new job scheduling method in cloud computing based on multi-swarm optimization algorithm with cultural algorithm is proposed in this paper. Firstly, The mathematical model is constructed for cloud scheduling problem, and then with the help of cultural algorithm model, particle swarm algorithm consists of the belief space while artificial fish swarm algorithm consists of group space, their parallel evolution and promote each other to solve the job scheduling mathematical model, finally, the simulation experiment is carried out to test the performance of the algorithm. The results show that, the proposed algorithm has fastened convergence speed and can obtain a better job scheduling scheme of cloud computing, and greatly shorten the work time, so it has a certain practical value.

    参考文献
    相似文献
    引证文献
引用本文

孙琼琼,蔡琪.文化框架下多群智能优化算法的云作业调度计算机测量与控制[J].,2015,23(1):273-276.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-03-27
  • 出版日期:
文章二维码