基于Gabor小波变换的ICA火灾图像纹理识别算法
DOI:
CSTR:
作者:
作者单位:

(海军工程大学 电气工程学院, 武汉 430033)

作者简介:

余 路(1989),男,山东青岛人,硕士研究生,主要从事火灾图像报警系统的应用方向的研究。 卜乐平(1965),男,湖北武汉人,博士生导师,主要从事信号检测与估计、故障诊断等方向的研究。 颜礼彬(1976),男,江西吉安人,博士后,主要从事信号检测、图像处理等方向的研究。[FQ)]

通讯作者:

中图分类号:

基金项目:


A Fire Texture Image Recognition Method Based on ICA and Gabor Wavelet Transform
Author:
Affiliation:

(School of Electrical Engineering,Naval University of Engineering, Wuhan 430033,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对火灾图像纹理识别问题,提出了基于Gabor小波变换的ICA火灾图像纹理识别算法,并根据火灾图像纹理识别特点进行了优化;首先用不同尺度和方向的Gabor滤波器对待识别图像滤波,得到其特征图像,然后将特征图像转化成特征向量作为ICA的输入,得到基矢量子空间,再将测试图像经过Gabor滤波器的特征向量投影到ICA子空间中得到系数向量作为目标识别特征,最后用支持向量机进行识别;通过与Gabor滤波器法和ICA方法的对比实验,表明该算法可以在火灾纹理图像的识别率上比传统方法提高5%以上,为火灾图像识别提供了一种新思路。

    Abstract:

    For the problem of fire image recognition, an algorithm combined with ICA and Gabor wavelet transform has been proposed for fire texture recognition,and optimized recognition method according to the fire image texture. Firstly, the image to be recognized is filtered by Gabor filters with different scales and orientations, and the characterized images is obtained. Then eigenvectors of these images are treated as the input of ICA. Base vector subspace can be obtained by using high-order statistic characteristics of ICA. Then the eigenvectors of test image filtered by Gabor filter are projected into ICA subspace, the coefficient vectors are treated as target recognition characteristics. At last, recognition is done by Support Vector Machine. After compared with Gabor filter method and ICA method, it indicated that proposed method can enhance recognition rate of fire texture images by over 5%. It gives a new approach for video fire detection.at robustness of this scheme gets a large progress, especially for the attacks of geometry crops and mosaic.

    参考文献
    相似文献
    引证文献
引用本文

余路,卜乐平,颜礼彬.基于Gabor小波变换的ICA火灾图像纹理识别算法计算机测量与控制[J].,2015,23(1):262-265.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-03-27
  • 出版日期:
文章二维码