基于ELMAN网络的非线性混沌微弱信号检测
作者:
作者单位:

(1.内蒙古财经大学 计算机信息管理学院,呼和浩特 010070; ;2.内蒙古丰泰发电有限责任公司,呼和浩特 010000)

作者简介:

曹风华(1977-),女,内蒙古呼和浩特市人,硕士研究生,讲师,主要从事人工智能,故障诊断方向的研究。[FQ)]


A Method for Nonlinear Chaos Weak Signal Detection Based on ELMAN Network
Author:
Affiliation:

(1.Computer Information Managemet College,Inner Mongolia University of Finance and Economics college,Hohhot 010070,China;2.Inner Mongolia Fengtai Power Co.,Ltd.,Hohhot 010000,China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [12]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    为了快速和实时地从具有强噪声的较低信噪比的原始信号中检测出有用信息,设计了一种混沌相空间重构理论和ELMAN神经网络的信号检测方法;首先,描述了采用混沌相空间重构理论对原始信号进行重构的原理和方法,在获取重构的时间序列的基础上,采用ELMAN网络来近似表示用于检测信号的函数型,然后,设计了ELMAN网络中各层之间连接权值的计算方式,并提出了采用ELMAN网络进行信号检测的具体过程,最后给出了采用混沌相空间重构理论和ELMAN网络的信号检测模型;对Lorenz混沌系统模型进行仿真实验,结果证明了文章方法能有效地对瞬时信号和周期性信息进行检测,在具有高斯白噪声的情况下,仍然具有降噪效果好的优点,是一种用于信号检测的可行性方法。

    Abstract:

    In order to detect the useful information in the primitive signal with strong noise quickly and in time,a signal detection method based on chaos phrase reconstruction theory and ELMAN network is proposed,Firstly,the principle and method based on chaos phase space reconstruction theory is described. Then the ELMAN network is used to approximately represent the function type on the obtained reconstruction time sequence,then the connecting weight for computing the weight among layers is designed,and the ELMAN network for detecting the signal is proposed. The simulation experiment result shows:the method in this paper can detect the momentary signal and cyclic signal,under the circumstance of Gaussian white noise,still having the good decomposition effect,so it is a feasible method for signal detection.

    参考文献
    [1] Xu B Q,Zhou H H,Sun L L,et al.Weak-signal detection and the application in detection of electric motor faults,2007 International Conference on Electrical Machines and Systems,IEEE Conference.2007:1103-1106.
    [2] 高晋占.微弱信号检测.北京:清华大学出版社,2009.
    [3] Lv H Y,Cao Z Y,Yan X P,et al.A combined method of weak signal detection.2009.Asia-Pacific Conference on Computational Intelligence and Industrial Applications,IEEE Conference.2010:106-109.
    [4] 杨海博,王海燕,申晓红.一种新的微弱未知信号混沌振子检测法.计算机应用研究,2012,3(29):1073-1075.
    [5] Niu J P,Su T,He X H,et al.Weak NQR signal detection based on generalized matched filter.Procedia Engineering,2010,7:377-382.
    [6] 夏均忠,刘远宏,冷永刚,等.微弱信号检测方法的现状分析.噪声与振动控制,2011,3(6):157-161.
    [7] Li J,Li H,Lei Zh Y.Research on the weak signal detection based on adaptive filtering of wavelet transform.Proceda Engineering,2011,15:2583-2587.
    [8] 杨海博,王海燕,申晓红.奇异谱技术在混沌背景下微弱信号检测中的应用.计算机测量与控制.2012,0(3):593-595.
    [9] 行鸿彦,程艳燕,徐伟.基于广义窗函数和最小二乘支持向量机的混沌背景下微弱信号检测.物理学报,2012,1(10):1-9.[ZK)]
    [10] 张仲海,王多,王太勇,等.采用粒子群算法的自适应变步长随机共振研究.振动与冲击,2013,9(32):125-130.
    [11] 魏恒东,甘露,李立萍.基于哈密顿量的Duffing振子微弱信号检测.电子科技大学学报,2012,1(2):203-207.
    [12] 李小玲,袁继敏,银星,等.混沌背景下微弱信号时域参数检测的研究.电子科技大学学报,2009,4(38):569-572.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

曹风华,王建利.基于ELMAN网络的非线性混沌微弱信号检测计算机测量与控制[J].,2014,22(11):3515-3517.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2015-01-22
文章二维码