基于优化BP神经网络的钢板测速修正方法
DOI:
CSTR:
作者:
作者单位:

(武汉大学 电子信息学院,武汉 430070)

作者简介:

唐银凤(1989),女,湖北黄石人,硕士研究生。主要从事测试计量技术与仪器方向的研究。 贺赛先(1968),男,湖北随州人,教授,主要从事测试计量技术与仪器方向的研究。

通讯作者:

中图分类号:

TP39

基金项目:


A Speed Correcting Method on Steel Plate Based on Improved BP Neural Network
Author:
Affiliation:

(College of Electronic Information, Wuhan University, Wuhan 430070, China) 

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在采用激光多普勒仪测速的钢板长度测量过程中,针对由于钢板表面因素和测量环境所引起的测量速度数据失真问题,设计了基于L-M(Levenberg-Marquardt)优化BP神经网络的钢板测速数据处理模型;通过进行多普勒测速数据分析调整BP网络结构和参数,依据误差反向传播理论将测速数据自适应地进行非线性拟合,修正测速粗差,最后计算钢板准确长度;与最小二乘(LS)拟合法的对比实验结果表明,该方法能更加准确地进行失真数据修正,现场运行结果表明该方法可将钢板测长精度提高10%以上,满足钢板长度测量的精度要求。

    Abstract:

    Due to the speed data distortion caused by the surface factor and measuring environment of the steel plate in the process of the steel plate length measurement using Laser Doppler Velocimetry, a data processing model of steel plate velocity measurement based on BP neural network which optimized by L-M has been designed. Adjust The BP network structure and parameters through analyzing the Doppler velocity data. Then the velocity data are adaptive nonlinear fitting based on the error back propagation theory and so correct the gross errors. Finally calculate the steel plate length accurately. Compared with LS, the results of the experiment show that this method can correct the fuzzy data more accurately. Results of field operation indicate that the steel plate length measurement accuracy can be increased by more than 10%, and meet the accuracy requirement of the steel plate length measurement.

    参考文献
    相似文献
    引证文献
引用本文

唐银凤,贺赛先,耿学贤.基于优化BP神经网络的钢板测速修正方法计算机测量与控制[J].,2014,22(10):3105-31073128.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-01-15
  • 出版日期:
文章二维码