群智能算法优化SVR预测模型的应用与分析
DOI:
CSTR:
作者:
作者单位:

(内蒙古科技大学 信息工程学院,内蒙古 包头 014010)

作者简介:

朱 林(1957-),女,河北承德人,教授,硕士研究生导师,主要从事智能控制、工业远程控制方向的研究。[FQ)]

通讯作者:

中图分类号:

TP301

基金项目:


Application and Analysis about Optimization of SVR Forecasting Model by Swarm Intelligence Algorithm
Author:
Affiliation:

(Information Engineering College, Inner Mongolia University of science and technology, Baotou 014000,China)[JZ)]

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    群体智能是基于生物群体行为规律的智能计算技术,常用以解决参数寻优等问题;作为群体智能的两种典型算法,蚁群算法和粒子群算法应用极为广泛;文章分析了标准蚁群算法和粒子群算法的不足,分别采用改进的蚁群算法和粒子群算法对支持向量机回归模型参数进行优化,并以钕铁硼吸氢阶段合金氢含量预测为例,通过MATLAB对改进后的预测模型进行了仿真验证,最终给出了两种方法优化后,模型的预测效果及性能对比;仿真结果表明,改进的群体智能算法对工艺优化控制有着重要的意义。

    Abstract:

    As a intelligent computing technology based on biological laws of group behavior,Swarm intelligence is widely used to solve the problems of parameter optimization. Ant colony algorithm and particle swarm optimization are widely used as two typical algorithms of swarm intelligence. In this paper we did analyze the insignificance of the standard ant colony algorithm and particle swarm optimization,then the improved ant colony algorithm and particle swarm optimization were respectively used to optimize the parameters of the regression model of support vector machine,and the hydrogen content of NdFeB alloy in the hydrogen absorption stage is taken as an example to simulates and verifies the improved model by MATLAB. The contrast of prediction performance of the regression model between two algorithms was given at last. The results of simulation indicate that the improved swarm intelligence algorithm has important significance on optimizing the process control.

    参考文献
    相似文献
    引证文献
引用本文

朱林,陆春伟.群智能算法优化SVR预测模型的应用与分析计算机测量与控制[J].,2014,22(9):2890-2892.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-05-29
  • 最后修改日期:2014-06-30
  • 录用日期:
  • 在线发布日期: 2014-12-18
  • 出版日期:
文章二维码