基于物联网和PCA支持向量机的交通流量预测系统
DOI:
CSTR:
作者:
作者单位:

(河南城建学院 计算机科学与工程学院,河南 平顶山 467036)

作者简介:

王永皎(1977-),女,河南新乡人,副教授,博士,主要从事人工智能、图像处理领域等方向的研究。 [FQ)]

通讯作者:

中图分类号:

TP393

基金项目:

河南省重点科技攻关项目(132102210478)。


Prediction System for Traffic Flow Based on Internet of Things and PCA Support Vector Machine
Author:
Affiliation:

(School of Computer Science, University of Urban Construction, Pingdingshan 467036, China) 

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决已有交通流量监测系统存在的数据采集分散、车辆识别度低、实时性差和流量预测误差大等问题,设计了一种基于物联网技术和最小二乘支持向量机(Least Squares Support Vector Machine, LSSVM)的交通流量预测系统;首先,描述了系统原理和部署模型,然后对系统的硬件即车载传感器节点和Sink节点进行了设计,同时对系统的软件流程进行了描述,通过在监控中心执行PCA主成分分析方法实现对采集数据提取独立主成分,消除无关冗余数据,在此基础上采用LSSVM实现道路交流流量预测;最后,在十字路口布置实验环境,实验结果表明:文章方法能实时精确地实现交通流量预测,与其它方法相比,具有拟合精度高和的泛化能力强的优点,具有很强的实用性。

    Abstract:

    In order to solve the given traffic flow monitoring system existing the problems such as data collection dispersion, low vehicle identification, low in-time performance and big prediction error, a traffic flow prediction based on Internet of things and LSSVM (Least Squares Support Vector Machine) was proposed. Firstly, the principle and deployment model of system was described. Then the hardware of system includes vehicle sensor and Sink node was designed, and the system software was also introduced. The monitoring center executed the PCA method to extract the independent main information for the rude data, and then the LSSVM was operated to predict the traffic flow for the next time. Finally, the method in this paper was simulated in the environment of crossing road, and the simulation result shows:the proposed method can in time and accurately predict the traffic flow, and compared with other methods, it has the advantages of high fitting accuracy and generalizing ability. Therefore, it has big practicability.

    参考文献
    相似文献
    引证文献
引用本文

王永皎,郭力争.基于物联网和PCA支持向量机的交通流量预测系统计算机测量与控制[J].,2014,22(7):2213-2215,2233.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-01-17
  • 最后修改日期:2014-03-17
  • 录用日期:
  • 在线发布日期: 2014-12-16
  • 出版日期:
文章二维码