催化裂化反再系统的故障诊断方法研究
DOI:
作者:
作者单位:

(南京工业大学 自动化与电气工程学院, 南京 211816)

作者简介:

程 明(1964-),男,江苏南京人,副教授,主要从事过程系统控制理论与优化策略、系统建模理论与仿真技术方向的研究。[FQ)]

通讯作者:

中图分类号:

TP181

基金项目:


Research on Fault Diagnosis of Reaction-Regenerator System of FCCU
Author:
Affiliation:

(College of Automation and Electrical Engineering, Nanjing University of Technology, Nanjing 211816, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    考虑到石油化工过程系统复杂,变量繁多,非线性关系极强,故障样本数据难于获取,故利用支持向量机对炼油厂催化裂化装置反应再生子系统的故障状态进行模式识别;且支持向量机参数C、σ对分类精度有很大影响,采用了改进的遗传算法对其进行优化;并采用了决策树算法进行多类分类,根据类间分离测度,从最难分类(类间分离测度最小)的两类样本集开始训练,将其合并为一个类簇后同其他样本集一起,再从中寻找最难分类的两个样本集合并,如此逐步合并最终得到训练模型;实验结果表明,利用改进的遗传算法优化惩罚系数C和核函数参数σ后,缩短了分类时间,提高了分类准确率,基于决策树算法的支持向量机能有效地解决一对一和一对多分类算法中存在的无法辨识区域的问题,能很好地识别故障类型,对催化裂化装置的故障诊断有显著的指导作用。

    Abstract:

    The system of petrochemical process is complex, its variables are various, and their relationship is strongly nonlinear, so use support vector machine to identify the pattern of the fault state on the regenerative subsystem of the catalytic cracking unit in oil refineries. Taking into account the parameters C、sigma have a great influence on the classification accuracy, so an improved genetic algorithm is used to optimize the parameters; And chose decision tree algorithm to classify, according to the separation measure between different categories, start training from the more difficult and most difficult classification sample sets, that is the separation measure is minimum, then combine them into a class cluster and put together with other sample sets, find two of the most difficult classification sample sets and combine them again, combine clusters like this and get the training model finally. The results show that after using the improved genetic algorithm to optimize penalty factor C and the kernel function parameter sigma, the time of classification is shortened and the accuracy of classification is improved. The algorithm based on decision tree support vector machine effectively solve the problem that area cannot be identified that exists in one against one and one against other multiple classification algorithm, can identify the fault types well and has a significant guidance on the fault diagnosis of FCCU.

    参考文献
    相似文献
    引证文献
引用本文

程明,栾秋波.催化裂化反再系统的故障诊断方法研究计算机测量与控制[J].,2014,22(6):1700-1703.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-01-20
  • 最后修改日期:2014-03-18
  • 录用日期:
  • 在线发布日期: 2014-11-12
  • 出版日期:
文章二维码