基于改进的布谷鸟算法在云计算资源的研究
CSTR:
作者单位:

武汉船舶职业技术学院,湖北工业大学

中图分类号:

TP18

基金项目:

中国高等职业技术教育研究会立项课题(GZYLX1213134),湖北省教育科学规划项目(2012B352)


ResearchSonSImpore CuckooSSearchSinSCloudSComputingResourceSScheduling
Author:
Affiliation:

Wuhan Institute of Shipbuilding Technology,HuBei University of Technology

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [12]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    如何进行更好地资源调度一直都是云计算研究的热点,本文在云计算资源算法中引入布谷鸟算法,针对布谷鸟算法中出现的收敛速度快,容易局部震荡等现象,本文首先引入高斯变异算子来处理每一个阶段中的鸟窝最佳位置的选择,然后通过自适应动态因子来调整不同阶段中的鸟窝位置的选择,使得改进后的算法收敛精度提高,通过适应度函数的平衡以及遗传算法中的三种操作,使得本文算法能够有效的提高云计算环境下的资源分配效率,降低了网络消耗。在Cloudsim平台仿真实验中,通过三个方面的比较,本文算法在性能上、资源调度效率和任务调度方面都有很大改进,有效提高了云计算系统的资源调度能力。

    Abstract:

    How to make better resource scheduling has always been a hot topic in the research on cloud computing. In this paper, the Cuckoo Search algorithm is introduced into cloud computing resources algorithm. In view of the phenomena such as fast convergence and frequent local oscillation in the application of Cuckoo Search algorithm, first the Gauss mutation operator is introduced in this paper to handle the selection of optimal nest position in every stage, and then the self-adaptive dynamic factor is used to adjust the selection of nest position in different stages. In this way, the improved algorithm is more precise in convergence. Through the balance of the fitness function and the three kinds of operation in Genetic Algorithm, the algorithm presented in this paper can effectively improve the efficiency of resource allocation in the cloud computing environment, and thus reduce the network consumption. In the simulation experiment on the Cloudsim platform, through the comparison in three aspects, the algorithm of this paper has been improved greatly in performance, efficiency of resource scheduling and task scheduling, which effectively improves the resource scheduling ability of the cloud computing system.

    参考文献
    [1]陈康,郑维民.云计算:系统实例与研究现状[J].软件学报,2009,20(5):1337-1348
    [2]卢笛等.一种增强公平性的云计算多资源分配算法[J].西安电子科技大学学报(自然科学版),2014,41(3):175-181
    [3]杨照峰,王启明,吕海莲. 基于任务延迟的云计算资源调度算法研究[J].计算机测量与控制,2014,22(2):499-502
    [4]刘波,刘青风.基于Qos和效用的云计算资源调度模型[J].计算机测量与控制,2014,22(3):826-828
    [5]王笑宇等.云计算环境下的动态碎片管理机制[J].计算机应用.2014,34(4):999-1004
    [6]冯小靖,潘郁.云计算环境下的DPSO资源负载均衡算法[J].计算机工程与应用.2013,49(6):105-108
    [7]李逦等. 基于改进型人工萤火虫算法的云计算资源研究[J].计算机应用研究.2013,30(8):2298-2300
    [8]薛玉.云计算环境下的资源调度优化模型研究[J].计算机仿真.2013,30(5):362-364
    [9]骆剑平,李霞,陈泯融.云计算环境中基于混合蛙跳算法的资源调度[J].计算机工程与应用.2012,48(29):67-72
    [10]刘愉等.云计算环境中优化遗传算法的资源调度策略[J].北京师范大学学报(自然科学版).2012,48(4):378-383
    [11]YANG X,SUASH D.Cuckoo search via Levy flight[C]//Proceedings of the 2009 World Congress on Nature Biologically Inspired Computing.Piscataway,NJ:IEEE Press,2009:210-214
    [12] CALHEIROS RN,RANJAN R, ROSE CAFD, BUYYA R CloudSim: a novel framework for modelingand simulation of cloud computing infrastructures and services[EB/OL].[2009-93]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

叶华乔,丁善婷.基于改进的布谷鸟算法在云计算资源的研究计算机测量与控制[J].,2014,22(12).

复制
分享
文章指标
  • 点击次数:2086
  • 下载次数: 144
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2014-05-22
  • 最后修改日期:2014-06-13
  • 录用日期:2014-06-16
  • 在线发布日期: 2014-12-10
文章二维码