基于组合优化神经网络的航空发动机叶片损伤图像分割
DOI:
CSTR:
作者:
作者单位:

(1.沈阳航空航天大学 航空航天工程学部,沈阳 110136;2.93057部队,吉林 132000)

作者简介:

石 宏(1961-),女,辽宁沈阳人,教授,博士,主要从事航空发动机制造与维修方向的研究。[FQ)]

通讯作者:

中图分类号:

V232.4

基金项目:

航空科学基金(2008ZG54024)。


Segmentation of Blade Damage Image of Aero-Engine Based on Combined-Optimization Neural Networks[HS)]
Author:
Affiliation:

(1.Faculty of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136,China;2.93057 Troop of PLA,Jilin 132000, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    采用PNN网络和RBF网络相融合的方法对航空发动机叶片损伤图像进行分割,选取损伤图像80个像素点的RGB值和HSV值分别作为PNN网络和RBF网络的输入样本;针对PNN网络和RBF网络的不足,采用GA算法优化PNN网络和RBF网络的输入参数;考虑到叶片损伤图像采集过程中不确定因素对分割结果的影响,采用D-S证据理论将两种网络分割结果进行融合,进而得到最终的叶片损伤图像分割结果;在30组测试样本中正确识别组数为29,识别率高达96.67%,实践表明,该方法有效地克服了凭借单一识别网络和单一信息源进行叶片损伤图像分割的不足,实现了对叶片损伤图像的高效分割。

    Abstract:

    Fusion method which is based on PNN neural networks and RBF neural networks is used for segmentation the blade damage image of aero-engine. Select 80 pixel RGB and HSV values of the image as train samples of PNN neural networks and RBF neural networks. According to the shortage of PNN neural networks and RBF neural networks, the genetic algorithm is used to optimize the input parameters of PNN neural networks and RBF neural networks. Take into account the uncertainty of aero-engine blades damage image in acquisition process, the D-S evidence theory was applied to fuse two kinds of neural networks and get the finally segmentation results.This method correctly recognize 29 groups of sample when all the samples is 30.So,the recognition rate is as high as 96.67%. The results show that this method effectively overcome the shortage of the single recognition network and single source of information for image segmentation of blade damage and this segmentation the blade damage image method is high-efficiency.

    参考文献
    相似文献
    引证文献
引用本文

石宏,张维亮,田中笑,李楠,李波.基于组合优化神经网络的航空发动机叶片损伤图像分割计算机测量与控制[J].,2014,22(5):1603-1605.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-01-28
  • 最后修改日期:2014-03-08
  • 录用日期:
  • 在线发布日期: 2014-12-16
  • 出版日期:
文章二维码